Структура программы на ассемблере. Общая характеристика системы команд языка Assembler для IBM-PC (базовый набор команд, основные способы адресации операндов). Структура программы на языке Assembler По дисциплине «Системное программирование»

Для того чтобы машина могла выполнить команды человека на аппаратном уровне, необходимо задать определенную последовательность действий на языке «ноликов и единиц». Помощником в этом деле станет Ассемблер. Это утилита, которая работает с переводом команд на машинный язык. Однако написание программы - весьма трудоемкий и сложный процесс. Данный язык не предназначен для создания легких и простых действий. На данный момент любой используемый язык программирования (Ассемблер работает прекрасно) позволяет написать специальные эффективные задачи, которые сильно влияют на работу аппаратной части. Основным предназначением является создание микрокоманд и небольших кодов. Данный язык дает больше возможностей, чем, например, Паскаль или С.

Краткое описание языков Ассемблера

Все языки программирования разделяются по уровням: низкий и высокий. Любой из синтаксической системы «семейки» Ассемблера отличается тем, что объединяет сразу некоторые достоинства наиболее распространенных и современных языков. С другими их роднит и то, что в полной мере можно использовать систему компьютера.

Отличительной особенностью компилятора является простота в использовании. Этим он отличается от тех, которые работают лишь с высокими уровнями. Если взять во внимание любой такой язык программирования, Ассемблер функционирует вдвое быстрее и лучше. Для того чтобы написать в нем легкую программу, не понадобится слишком много времени.

Кратко о структуре языка

Если говорить в общем о работе и структуре функционирования языка, можно точно сказать, что его команды полностью соответствуют командам процессора. То есть Ассемблер использует мнемокоды, наиболее удобные человеку для записи.

В отличие от других языков программирования, Ассемблер использует вместо адресов для записи ячеек памяти определенные метки. Они с процессом выполнения кода переводятся в так называемые директивы. Это относительные адреса, которые не влияют на работу процессора (не переводятся в машинный язык), а необходимы для распознавания самой средой программирования.

Для каждой линейки процессора существует своя При таком раскладе правильным будет любой процесс, в том числе и переведенный

Язык Ассемблера имеет несколько синтаксисов, которые будут рассмотрены в статье.

Плюсы языка

Наиболее важным и удобным приспособлением языка Ассемблера станет то, что на нем можно написать любую программу для процессора, которая будет весьма компактной. Если код оказывается огромным, то некоторые процессы перенаправляет в оперативную память. При этом они все выполняют достаточно быстро и без сбоев, если конечно, ими управляет квалифицированный программист.

Драйвера, операционные системы, BIOS, компиляторы, интерпретаторы и т. д. - это все программа на языке Ассемблера.

При использовании дизассемблера, который совершает перевод из машинного в можно запросто понять, как работает та или иная системная задача, даже если к ней нет пояснений. Однако такое возможно лишь в том случае, если программы легкие. К сожалению, в нетривиальных кодах разобраться достаточно сложно.

Минусы языка

К сожалению, начинающим программистам (и зачастую профессионалам) трудно разобрать язык. Ассемблер требует подробного описания необходимой команды. Из-за того, что нужно использовать машинные команды, растет вероятность ошибочных действий и сложность выполнения.

Для того чтобы написать даже самую простую программу, программист должен быть квалифицированным, а его уровень знаний достаточно высоким. Средний специалист, к сожалению, зачастую пишет плохие коды.

Если платформа, для которой создается программа, обновляется, то все команды необходимо переписывать вручную - этого требует сам язык. Ассемблер не поддерживает функцию автоматического регулирования работоспособности процессов и замену каких-либо элементов.

Команды языка

Как уже было сказано выше, для каждого процессора имеется свой набор команд. Простейшими элементами, которые распознаются любыми типами, являются следующие коды:


Использование директив

Программирование микроконтроллеров на языке (Ассемблер это позволяет и прекрасно справляется с функционированием) самого низкого уровня в большинстве случаев заканчивается удачно. Лучше всего использовать процессоры с ограниченным ресурсом. Для 32-разрядной техники данный язык подходит отлично. Часто в кодах можно заметить директивы. Что же это? И для чего используется?

Для начала необходимо сделать акцент на том, что директивы не переводятся в машинный язык. Они регулируют выполнение работы компилятором. В отличие от команд, эти параметры, имея различные функции, отличаются не благодаря разным процессорам, а за счет другого транслятора. Среди основных директив можно выделить следующие:


Происхождение названия

Благодаря чему получил название язык - "Ассемблер"? Речь идет о трансляторе и компиляторе, которые и производят зашифровку данных. С английского Assembler означает не что иное, как сборщик. Программа не была собрана вручную, была использована автоматическая структура. Более того, на данный момент уже у пользователей и специалистов стерлась разница между терминами. Часто Ассемблером называют языки программирования, хотя это всего лишь утилита.

Из-за общепринятого собирательного названия у некоторых возникает ошибочное решение, что существует единый язык низкого уровня (или же стандартные нормы для него). Чтобы программист понял, о какой структуре идет речь, необходимо уточнять, для какой платформы используется тот или иной язык Ассемблера.

Макросредства

Языки Ассемблера, которые созданы относительно недавно, имеют макросредства. Они облегчают как написание, так и выполнение программы. Благодаря их наличию, транслятор выполняет написанный код в разы быстрее. При создании условного выбора можно написать огромный блок команд, а проще воспользоваться макросредствами. Они позволят быстро переключаться между действиями, в случае выполнения условия или невыполнения.

При использовании директив макроязыка программист получает макросы Ассемблера. Иногда он может широко использоваться, а иногда его функциональные особенности снижаются до одной команды. Их наличие в коде облегчает работу с ним, делает его более понятным и наглядным. Однако следует все равно быть внимательным - в некоторых случаях макросы, наоборот, ухудшают ситуацию.

По назначению можно выделить команды (в скобках приводятся примеры мнемонических кодов операций команд ассемблера ПК типа IBM PC):

l выполнения арифметических операций (ADD и ADC - сложения и сложения с переносом, SUB и SBB - вычитания и вычитания с заемом, MUL и IMUL - умножения без знака и со знаком, DIV и IDIV - деления без знака и со знаком, CMP - сравнения и т. д.);

l выполнения логических операций (OR, AND, NOT, XOR, TEST и т. д.);

l пересылки данных (MOV - переслать, XCHG - обменять, IN - ввести в микропроцессор, OUT - вывести из микропроцессора и т. д.);

l передачи управления (ветвления программы: JMP - безусловного перехода, CALL - вызова процедуры, RET - возврата из процедуры, J* - условного перехода, LOOP - управления циклом и т. д.);

l обработки строк символов (MOVS - пересылки, CMPS - сравнения, LODS - загрузки, SCAS - сканирования. Эти команды обычно используются с префиксом (модификатором повторения) REP;

l прерывания работы программы (INT - программные прерывания, INTO - условного прерывания при переполнении, IRET - возврата из прерывания);

l управления микропроцессором (ST* и CL* - установки и сброса флагов, HLT - останова, WAIT - ожидания, NOP - холостого хода и т. д.).

С полным списком команд ассемблера можно познакомиться в работах .

Команды пересылки данных

l MOV dst, src - пересылка данных (move - переслать из src в dst).

Пересылает: один байт (если src и dst имеют формат байта) или одно слово (если src и dst имеют формат слова) между регистрами или между регистром и памятью, а также заносит непосредственное значение в регистр или в память.

Операнды dst и src должны иметь одинаковый формат - байт или слово.

Src могут иметь тип: r (register) - регистр, m (memory) - память, i (impedance) - непосредственное значение. Dst могут быть типа r, m. Нельзя в одной команде использовать операнды: rsegm совместно с i; два операнда типа m и два операнда типа rsegm). Операнд i может быть и простым выражением:

mov AX, (152 + 101B) / 15

Вычисление выражения выполняется только при трансляции. Флаги не меняет.

l PUSH src - занесение слова в стек (push- протолкнуть; записать в стек изsrc). Помещает в вершину стека содержимое src - любого 16-битового регистра (в том числе и сегментного) или двух ячеек памяти, содержащих 16-битовое слово. Флаги не меняются;

l POP dst - извлечение слова из стека (pop - вытолкнуть; считать из стека в dst). Снимает слово с вершины стека и помещает его в dst - любой 16-битовый регистр (в том числе и сегментный) или в две ячейки памяти. Флаги не меняются.

НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ УЗБЕКИСТАНА ИМЕНИ МИРЗО УЛУГБЕКА

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИИ

На тему: Семантический разбор EXE-файла.

Выполнил:

Ташкент 2003.

Предисловие.

Язык ассемблера и структура команд.

Структура EXE –файла (семантический разбор).

Структура COM-файла.

Принцип действия и распространения вируса.

Дисассемблер.

Программы.

Предисловие

Профессия программиста удивительна и уникальна. В наше время науку и жизнь невозможно представить без новейших технологии. Все что связано с деятельностью человека не обходится без вычислительной техники. А это способствует ее высокому развитию и совершенству. Пусть развитие персональных компьютеров началось не так давно, но в течение этого времени были сделаны колоссальные шаги по программным продуктам и еще долгое время эти продукты будут широко использоваться. Область связанных с компьютерами знании претерпела взрыв, как и соответствующая технология. Если не брать в рассмотрение коммерческую сторону, то можно сказать, что чужих людей в этой области профессиональной деятельности нет. Многие занимаются разработкой программ не ради выгоды или заработка, а по собственной воле, по увлечению. Конечно это не должно сказаться на качестве программы, и в этом деле так сказать «бизнесе» есть конкуренция и спрос на качество исполнения, на стабильной работе и отвечающий всем требованиям современности. Здесь так же стоит отметить появление микропроцессоров в 60-х годах, которые пришли на замену большого количества набора ламп. Есть некоторые разновидности микропроцессоров которые сильно отличаются друг от друга. Эти микропроцессоры отличны друг от друга разрядностью и встроенными системными командами. Самые распространенные такие как: Intel, IBM, Celeron, AMD и т.д. Все эти процессоры имеют отношение к развитой архитектуре процессоров фирмы Intel. Распространение микрокомпьютеров послужило причиной пересмотра отношения к языку ассемблера по двум основным причинам. Во-первых, программы, написанные на языке ассемблера, требуют значительно меньше памяти и времени выполнения. Во-вторых, знание языка ассемблера и результирующего машинного кода дает понимание архитектуры машины, что вряд ли обеспечивается при работе на языке высокого уровня. Хотя большинство специалистов в области программного обеспечения ведут разработки на языках высокого уровня, таких как Паскаль, С или Delphi, что проще при написании программ, наиболее мощное и эффективное программное обеспечение полностью или частично написано на языке ассемблера. Языки высокого уровня были разработаны для того, чтобы избежать специальной технической особенности конкретных компьютеров. А язык ассемблера, в свою очередь, разработан для конкретной специфики процессора. Следовательно, для того, чтобы написать программу на языке ассемблера для конкретного компьютера, следует знать его архитектуру. В настоящие дни видом основного программного продукта является EXE-файл. Учитывая положительные стороны этого, автор программы может быть уверен в ее неприкосновенности. Но зачастую порой это далеко не так. Существует так же и дисассемблер. С помощью дисассемблера можно узнать прерывания и коды программы. Человеку, хорошо разбирающегося в ассемблере не сложно будет переделать всю программу на свой вкус. Возможно отсюда появляется самая неразрешимая проблема – вирус. Зачем же люди пишут вирус? Некоторые задают этот вопрос с удивлением, некоторые с злостью, но тем не менее продолжают существовать люди которые интересуются этой задачей не с точки зрения нанесения какого-то вреда, а как интереса к системному программированию. Пишут Вирусы по разным причинам. Одним нравится системные вызовы, другим совершенствовать свои знания в ассемблера. Обо всем этом я постараюсь изложить в своей курсовой работе. Так же в нем сказано не только про структуру EXE-файла но и про язык ассемблера.

^ Язык Ассемблера.

Интересно проследить, начиная со времени появления первых компьютеров и заканчивая сегодняшним днем, за трансформациями представлений о языке ассемблера у программистов.

Когда-то ассемблер был языком, без знания которого нельзя было заставить компьютер сделать что-либо полезное. Постепенно ситуация менялась. Появлялись более удобные средства общения с компьютером. Но, в отличие от других языков, ассемблер не умирал, более того он не мог сделать этого в принципе. Почему? В поисках ответа попытаемся понять, что такое язык ассемблера вообще.

Если коротко, то язык ассемблера - это символическое представление машинного языка. Все процессы в машине на самом низком, аппаратном уровне приводятся в действие только командами (инструкциями) машинного языка. Отсюда понятно, что, несмотря на общее название, язык ассемблера для каждого типа компьютера свой. Это касается и внешнего вида программ, написанных на ассемблере, и идей, отражением которых этот язык является.

По-настоящему решить проблемы, связанные с аппаратурой (или даже, более того, зависящие от аппаратуры как, к примеру, повышение быстродействия программы), невозможно без знания ассемблера.

Программист или любой другой пользователь может использовать любые высокоуровневые средства, вплоть до программ построения виртуальных миров и, возможно, даже не подозревать, что на самом деле компьютер выполняет не команды языка, на котором написана его программа, а их трансформированное представление в форме скучной и унылой последовательности команд совсем другого языка - машинного. А теперь представим, что у такого пользователя возникла нестандартная проблема или просто что-то не заладилось. К примеру, его программа должна работать с некоторым необычным устройством или выполнять другие действия, требующие знания принципов работы аппаратуры компьютера. Каким бы умным ни был программист, каким бы хорошим ни был язык, на котором он написал свою чудную программу, без знания ассемблера ему не обойтись. И не случайно практически все компиляторы языков высокого уровня содержат средства связи своих модулей с модулями на ассемблере либо поддерживают выход на ассемблерный уровень программирования.

Конечно, время компьютерных универсалов уже прошло. Как говорится нельзя объять необъятное. Но есть нечто общее, своего рода фундамент, на котором строится любое серьезное компьютерное образование. Это знания о принципах работы компьютера, его архитектуре и языке ассемблера как отражении и воплощении этих знаний.

Типичный современный компьютер (на базе i486 или Pentium) состоит из следующих компонентов (рис. 1).

Рис. 1. Компьютер и периферийные устройства

Рис. 2. Структурная схема персонального компьютера

Из рисунка (рис 1) видно, что компьютер составлен из нескольких физических устройств, каждое из которых подключено к одному блоку, называемому системным. Если рассуждать логически, то ясно, что он играет роль некоторого координирующего устройства. Давайте заглянем внутрь системного блока (не нужно пытаться проникнуть внутрь монитора - там нет ничего интересного, к тому же это опасно): открываем корпус и видим какие-то платы, блоки, соединительные провода. Чтобы понять их функциональное назначение, посмотрим на структурную схему типичного компьютера (рис. 2). Она не претендует на безусловную точность и имеет целью лишь показать назначение, взаимосвязь и типовой состав элементов современного персонального компьютера.

Обсудим схему на рис. 2 в несколько нетрадиционном стиле.
Человеку свойственно, встречаясь с чем-то новым, искать какие-то ассоциации, которые могут помочь ему познать неизвестное. Какие ассоциации вызывает компьютер? У меня, к примеру, компьютер часто ассоциируется с самим человеком. Почему?

Человек создавая компьютер где то в глубине себя думал что создает что то похожее на себя самого. У компьютера есть органы восприятия информации из внешнего мира - это клавиатура, мышь, накопители на магнитных дисках. На рис. 2 эти органы расположены справа от системных шин. У компьютера есть органы “переваривающие” полученную информацию - это центральный процессор и оперативная память. И, наконец, у компьютера есть органы речи, выдающие результаты переработки. Это также некоторые из устройств справа.

Современным компьютерам, конечно, далеко до человека. Их можно сравнить с существами, взаимодействующими с внешним миром на уровне большого, но ограниченного набора безусловных рефлексов.
Этот набор рефлексов образует систему машинных команд. На каком бы высоком уровне вы не общались с компьютером, в конечном итоге все сводится к скучной и однообразной последовательности машинных команд.
Каждая машинная команда является своего рода раздражителем для возбуждения того или иного безусловного рефлекса. Реакция на этот раздражитель всегда однозначная и “зашита” в блоке микрокоманд в виде микропрограммы. Эта микропрограмма и реализует действия по реализации машинной команды, но уже на уровне сигналов, подаваемых на те или иные логические схемы компьютера, тем самым управляя различными подсистемами компьютера. В этом состоит так называемый принцип микропрограммного управления.

Продолжая аналогию с человеком, отметим: для того, чтобы компьютер правильно питался, придумано множество операционных систем, компиляторов сотен языков программирования и т. д. Но все они являются, по сути, лишь блюдом, на котором по определенным правилам доставляется пища (программы) желудку (компьютеру). Только желудок компьютера любит диетическую, однообразную пищу - подавай ему информацию структурированную, в виде строго организованных последовательностей нулей и единиц, комбинации которых и составляют машинный язык.

Таким образом, внешне являясь полиглотом, компьютер понимает только один язык - язык машинных команд. Конечно, для общения и работы с компьютером, необязательно знать этот язык, но практически любой профессиональный программист рано или поздно сталкивается с необходимостью его изучения. К счастью, программисту не нужно пытаться постичь значение различных комбинаций двоичных чисел, так как еще в 50-е годы программисты стали использовать для программирования символический аналог машинного языка, который назвали языком ассемблера. Этот язык точно отражает все особенности машинного языка. Именно поэтому, в отличие от языков высокого уровня, язык ассемблера для каждого типа компьютера свой.

Из всего вышесказанного можно сделать вывод, что, так как язык ассемблера для компьютера “родной”, то и самая эффективная программа может быть написана только на нем (при условии, что ее пишет квалифицированный программист). Здесь есть одно маленькое “но”: это очень трудоемкий, требующий большого внимания и практического опыта процесс. Поэтому реально на ассемблере пишут в основном программы, которые должны обеспечить эффективную работу с аппаратной частью. Иногда на ассемблере пишутся критичные по времени выполнения или расходованию памяти участки программы. Впоследствии они оформляются в виде подпрограмм и совмещаются с кодом на языке высокого уровня.

К изучению языка ассемблера любого компьютера имеет смысл приступать только после выяснения того, какая часть компьютера оставлена видимой и доступной для программирования на этом языке. Это так называемая программная модель компьютера, частью которой является программная модель микропроцессора, которая содержит 32 регистра в той или иной мере доступных для использования программистом.

Данные регистры можно разделить на две большие группы:

^ 16 пользовательских регистров;

16 системных регистров.

В программах на языке ассемблера регистры используются очень интенсивно. Большинство регистров имеют определенное функциональное назначение.

Как следует из названия, пользовательскими регистры называются потому, что программист может использовать их при написании своих программ. К этим регистрам относятся (рис. 3):

Восемь 32-битных регистров, которые могут использоваться программистами для хранения данных и адресов (их еще называют регистрами общего назначения (РОН)):

шесть регистров сегментов: cs, ds, ss, es, fs, gs;

регистры состояния и управления:

Регистр флагов eflags/flags;

Регистр указателя команды eip/ip.

Рис. 3. Пользовательские регистры микропроцессоров i486 и Pentium

Почему многие из этих регистров приведены с наклонной разделительной чертой? Нет, это не разные регистры - это части одного большого 32-разрядного регистра. Их можно использовать в программе как отдельные объекты. Так сделано для обеспечения работоспособности программ, написанных для младших 16-разрядных моделей микропроцессоров фирмы Intel, начиная с i8086. Микропроцессоры i486 и Pentium имеют в основном 32-разрядные регистры. Их количество, за исключением сегментных регистров, такое же, как и у i8086, но размерность больше, что и отражено в их обозначениях - они имеют
приставку e (Extended).

^ Регистры общего назначения
Все регистры этой группы позволяют обращаться к своим “младшим” частям (см. рис. 3). Рассматривая этот рисунок, заметьте, что использовать для самостоятельной адресации можно только младшие 16 и 8-битные части этих регистров. Старшие 16 бит этих регистров как самостоятельные объекты недоступны. Это сделано, как мы отметили выше, для совместимости с младшими 16-разрядными моделями микропроцессоров фирмы Intel.

Перечислим регистры, относящиеся к группе регистров общего назначения. Так как эти регистры физически находятся в микропроцессоре внутри арифметико-логического устройства (АЛУ), то их еще называют регистрами АЛУ:

eax/ax/ah/al (Accumulator register) - аккумулятор.
Применяется для хранения промежуточных данных. В некоторых командах использование этого регистра обязательно;

ebx/bx/bh/bl (Base register) - базовый регистр.
Применяется для хранения базового адреса некоторого объекта в памяти;

ecx/cx/ch/cl (Count register) - регистр-счетчик.
Применяется в командах, производящих некоторые повторяющиеся действия. Его использование зачастую неявно и скрыто в алгоритме работы соответствующей команды.
К примеру, команда организации цикла loop кроме передачи управления команде, находящейся по некоторому адресу, анализирует и уменьшает на единицу значение регистра ecx/cx;

edx/dx/dh/dl (Data register) - регистр данных.
Так же, как и регистр eax/ax/ah/al, он хранит промежуточные данные. В некоторых командах его использование обязательно; для некоторых команд это происходит неявно.

Следующие два регистра используются для поддержки так называемых цепочечных операций, то есть операций, производящих последовательную обработку цепочек элементов, каждый из которых может иметь длину 32, 16 или 8 бит:

esi/si (Source Index register) - индекс источника.
Этот регистр в цепочечных операциях содержит текущий адрес элемента в цепочке-источнике;

edi/di (Destination Index register) - индекс приемника (получателя).
Этот регистр в цепочечных операциях содержит текущий адрес в цепочке-приемнике.

В архитектуре микропроцессора на программно-аппаратном уровне поддерживается такая структура данных, как стек. Для работы со стеком в системе команд микропроцессора есть специальные команды, а в программной модели микропроцессора для этого существуют специальные регистры:

esp/sp (Stack Pointer register) - регистр указателя стека.
Содержит указатель вершины стека в текущем сегменте стека.

ebp/bp (Base Pointer register) - регистр указателя базы кадра стека.
Предназначен для организации произвольного доступа к данным внутри стека.

Стеком называют область программы для временного хранения произвольных данных. Разумеется, данные можно сохранять и в сегменте данных, однако в этом случае для каждого сохраняемого на время данного надо заводить отдельную именованную ячейку памяти, что увеличивает размер программы и количество используемых имен. Удобство стека заключается в том, что его область используется многократно, причем сохранение в стеке данных и выборка их оттуда выполняется с помощью эффективных команд push и pop без указания каких-либо имен.
Стек традиционно используется, например, для сохранения содержимого регистров, используемых программой, перед вызовом подпрограммы, которая, в свою очередь, будет использовать регистры процессора "в своих личных целях". Исходное содержимое регистров изатекается из стека после возврата из подпрограммы. Другой распространенный прием - передача подпрограмме требуемых ею параметров через стек. Подпрограмма, зная, в каком порядке помещены в стек параметры, может забрать их оттуда и использовать при своем выполнении. Отличительной особенностью стека является своеобразный порядок выборки содержащихся в нем данных: в любой момент времени в стеке доступен только верхний элемент, т.е. элемент, загруженный в стек последним. Выгрузка из стека верхнего элемента делает доступным следующий элемент. Элементы стека располагаются в области памяти, отведенной под стек, начиная со дна стека (т.е. с его максимального адреса) по последовательно уменьшающимся адресам. Адрес верхнего, доступного элемента хранится в регистре-указателе стека SP. Как и любая другая область памяти программы, стек должен входить в какой-то сегмент или образовывать отдельный сегмент. В любом случае сегментный адрес этого сегмента помещается в сегментный регистр стека SS. Таким образом, пара регистров SS:SP описывают адрес доступной ячейки стека: в SS хранится сегментный адрес стека, а в SP - смещение последнего сохраненного в стеке данного (рис. 4, а). Обратитим внимание на то, что в исходном состоянии указатель стека SP указывает на ячейку, лежащую под дном стека и не входящую в него.

Рис 4. Организация стека: а - исходное состояние, б - после загрузки одного элемента (в данном примере - содержимого регистра АХ), в - после загрузки второго элемента (содержимого регистра DS), г - после выгрузки одного элемента, д - после выгрузки двух элементов и возврата в исходное состояние.

Загрузка в стек осуществляется специальной командой работы со стеком push (протолкнуть). Эта команда сначала уменьшает на 2 содержимое указателя стека, а затем помещает операнд по адресу в SP. Если, например, мы хотим временно сохранить в стеке содержимое регистра АХ, следует выполнить команду

Стек переходит в состояние, показанное на рис. 1.10, б. Видно, что указатель стека смещается на два байта вверх (в сторону меньших адресов) и по этому адресу записывается указанный в команде проталкивания операнд. Следующая команда загрузки в стек, например,

переведет стек в состояние, показанное на рис. 1.10, в. В стеке будут теперь храниться два элемента, причем доступным будет только верхний, на который указывает указатель стека SP. Если спустя какое-то время нам понадобилось восстановить исходное содержимое сохраненных в стеке регистров, мы должны выполнить команды выгрузки из стека pop (вытолкнуть):

pop DS
pop AX

Какого размера должен быть стек? Это зависит от того, насколько интенсивно он используется в программе. Если, например, планируется хранить в стеке массив объемом 10 000 байт, то стек должен быть не меньше этого размера. При этом надо иметь в виду, что в ряде случаев стек автоматически используется системой, в частности, при выполнении команды прерывания int 21h. По этой команде сначала процессор помещает в стек адрес возврата, а затем DOS отправляет туда же содержимое регистров и другую информацию, относящуюся к прерванной программе. Поэтому, даже если программа совсем не использует стек, он все же должен присутствовать в программе и иметь размер не менее нескольких десятков слов. В нашем первом примере мы отвели под стек 128 слов, что безусловно достаточно.

^ Структура программы на ассемблере

Программа на ассемблере представляет собой совокупность блоков памяти, называемых сегментами памяти. Программа может состоять из одного или нескольких таких блоков-сегментов. Каждый сегмент содержит совокупность предложений языка, каждое из которых занимает отдельную строку кода программы.

Предложения ассемблера бывают четырех типов:

команды или инструкции, представляющие собой символические аналоги машинных команд. В процессе трансляции инструкции ассемблера преобразуются в соответствующие команды системы команд микропроцессора;

макрокоманды - оформляемые определенным образом предложения текста программы, замещаемые во время трансляции другими предложениями;

директивы, являющиеся указанием транслятору ассемблера на выполнение некоторых действий. У директив нет аналогов в машинном представлении;

строки комментариев, содержащие любые символы, в том числе и буквы русского алфавита. Комментарии игнорируются транслятором.

^ Синтаксис ассемблера

Предложения, составляющие программу, могут представлять собой синтаксическую конструкцию, соответствующую команде, макрокоманде, директиве или комментарию. Для того чтобы транслятор ассемблера мог распознать их, они должны формироваться по определенным синтаксическим правилам. Для этого лучше всего использовать формальное описание синтаксиса языка наподобие правил грамматики. Наиболее распространенные способы подобного описания языка программирования - синтаксические диаграммы и расширенные формы Бэкуса-Наура. Для практического использования более удобны синтаксические диаграммы. К примеру, синтаксис предложений ассемблера можно описать с помощью синтаксических диаграмм, показанных на следующих рисунках.

Рис. 5. Формат предложения ассемблера

Рис. 6. Формат директив

Рис. 7. Формат команд и макрокоманд

На этих рисунках:

имя метки - идентификатор, значением которого является адрес первого байта того предложения исходного текста программы, которое он обозначает;

имя - идентификатор, отличающий данную директиву от других одноименных директив. В результате обработки ассемблером определенной директивы этому имени могут быть присвоены определенные характеристики;

код операции (КОП) и директива - это мнемонические обозначения соответствующей машинной команды, макрокоманды или директивы транслятора;

операнды - части команды, макрокоманды или директивы ассемблера, обозначающие объекты, над которыми производятся действия. Операнды ассемблера описываются выражениями с числовыми и текстовыми константами, метками и идентификаторами переменных с использованием знаков операций и некоторых зарезервированных слов.

^ Как использовать синтаксические диаграммы? Очень просто: для этого нужно всего лишь найти и затем пройти путь от входа диаграммы (слева) к ее выходу (направо). Если такой путь существует, то предложение или конструкция синтаксически правильны. Если такого пути нет, значит эту конструкцию компилятор не примет. При работе с синтаксическими диаграммами обратим внимание на направление обхода, указываемое стрелками, так как среди путей могут быть и такие, по которым можно идти справа налево. По сути, синтаксические диаграммы отражают логику работы транслятора при разборе входных предложений программы.

Допустимыми символами при написании текста программ являются:

Все латинские буквы: A-Z, a-z. При этом заглавные и строчные буквы считаются эквивалентными;

Цифры от 0 до 9;

Знаки?, @, $, _, &;

Разделители, . () < > { } + / * % ! " " ? \ = # ^.

Предложения ассемблера формируются из лексем, представляющих собой синтаксически неразделимые последовательности допустимых символов языка, имеющие смысл для транслятора.

Лексемами являются:

идентификаторы - последовательности допустимых символов, использующиеся для обозначения таких объектов программы, как коды операций, имена переменных и названия меток. Правило записи идентификаторов заключается в следующем: идентификатор может состоять из одного или нескольких символов. В качестве символов можно использовать буквы латинского алфавита, цифры и некоторые специальные знаки - _, ?, $, @. Идентификатор не может начинаться символом цифры. Длина идентификатора может быть до 255 символов, хотя транслятор воспринимает лишь первые 32, а остальные игнорирует. Регулировать длину возможных идентификаторов можно с использованием опции командной строки mv. Кроме этого существует возможность указать транслятору на то, чтобы он различал прописные и строчные буквы либо игнорировал их различие (что и делается по умолчанию).

^ Команды ассемблера.

Команды ассемблера раскрывают возможность передавать компьютеру свои требования, механизм передачи управления в программе (циклы и переходы) для логических сравнений и программной организации. Однако, программируемые задачи редко бывают так просты. Большинство программ содержат ряд циклов, в которых несколько команд повторяются до достижения определенного требования, и различные проверки, определяющие, какие из нескольких действий следует выполнять. Некоторые команды могут передавать управление, изменяя нормальную последовательность шагов непосредственной модификацией значения смещения в командном указателе. Как говорилось ранее, существуют различные команды для различных процессоров, мы же будем рассматривать ряд некоторых команд для процессоров 80186, 80286 и 80386.

Для описания состояния флагов после выполнения некоторой команды будем использовать выборку из таблицы, отражающей структуру регистра флагов eflags:

В нижней строке этой таблицы приводятся значения флагов после выполнения команды. При этом используются следующие обозначения:

1 - после выполнения команды флаг устанавливается (равен 1);

0 - после выполнения команды флаг сбрасывается (равен 0);

r - значение флага зависит от результата работы команды;

После выполнения команды флаг не определен;

пробел - после выполнения команды флаг не изменяется;

Для представления операндов в синтаксических диаграммах используются следующие обозначения:

r8, r16, r32 - операнд в одном из регистров размером байт, слово или двойное слово;

m8, m16, m32, m48 - операнд в памяти размером байт, слово, двойное слово или 48 бит;

i8, i16, i32 - непосредственный операнд размером байт, слово или двойное слово;

a8, a16, a32 - относительный адрес (смещение) в сегменте кода.

Команды (в алфавитном порядке):

*Данные команды описаны подробно.

ADD
(ADDition)

Сложение

^ Схема команды:

add приемник, источник

Назначение: сложение двух операндов источник и приемник размерностью байт, слово или двойное слово.

Алгоритм работы:

сложить операнды источник и приемник;

записать результат сложения в приемник;

установить флаги.

Состояние флагов после выполнения команды:

Применение:
Команда add используется для сложения двух целочисленных операндов. Результат сложения помещается по адресу первого операнда. Если результат сложения выходит за границы операнда приемник (возникает переполнение), то учесть эту ситуацию следует путем анализа флага cf и последующего возможного применения команды adc. Например, сложим значения в регистре ax и области памяти ch. При сложении следует учесть возможность переполнения.

Регистр плюс регистр или память:

|000000dw|modregr/rm|

Регистр AX (AL) плюс непосредственное значение:

|0000010w|--data--|data, если w=1|

Регистр или память плюс непосредственное значение:

|100000sw|mod000r/m|--data--|data, если BW=01|

CALL
(CALL)

Вызов процедуры или задачи

^ Схема команды:

Назначение:

передача управления близкой или дальней процедуре с запоминанием в стеке адреса точки возврата;

переключение задач.

Алгоритм работы:
определяется типом операнда:

Метка ближняя - в стек заносится содержимое указателя команд eip/ip и в этот же регистр загружается новое значение адреса, соответствующее метке;

Метка дальняя - в стек заносится содержимое указателя команд eip/ip и cs. Затем в эти же регистры загружаются новые значения адресов, соответствующие дальней метке;

R16, 32 или m16, 32 - определяют регистр или ячейку памяти, содержащие смещения в текущем сегменте команд, куда передается управление. При передаче управления в стек заносится содержимое указателя команд eip/ip;

Указатель на память - определяет ячейку памяти, содержащую 4 или 6-байтный указатель на вызываемую процедуру. Структура такого указателя 2+2 или 2+4 байта. Интерпретация такого указателя зависит от режима работы микропроцессора:

^ Состояние флагов после выполнения команды (кроме переключения задачи):

выполнение команды не влияет на флаги

При переключении задачи значения флажков изменяются в соответствии с информацией о регистре eflags в сегменте состояния TSS задачи, на которую производится переключение.
Применение:
Команда call позволяет организовать гибкую и многовариантную передачу управления на подпрограмму с сохранением адреса точки возврата.

О б ъ е к т н ы й к о д (четыре формата):

Прямая адресация в сегменте:

|11101000|disp-low|diep-high|

Косвенная адресация в сегменте:

|11111111|mod010r/m|

Косвенная адресация между сегментами:

|11111111|mod011r/m|

Прямая адресация между сегментами:

|10011010|offset-low|offset-high|seg-low|seg-high|

CMP
(CoMPare operands)

Сравнение операндов

^ Схема команды:

cmp операнд1,операнд2

Назначение: сравнение двух операндов.

Алгоритм работы:

выполнить вычитание (операнд1-операнд2);

в зависимости от результата установить флаги, операнд1 и операнд2 не изменять (то есть результат не запоминать).

Применение:
Данная команда используется для сравнения двух операндов методом вычитания, при этом операнды не изменяются. По результатам выполнения команды устанавливаются флаги. Команда cmp применяется с командами условного перехода и командой установки байта по значению setcc.

О б ъ е к т н ы й к о д (три формата):

Регистр или память с регистром:

|001110dw|modregr/m|

Непосредственное значение с регистром AX (AL):

|0011110w|--data--|data, если w=1|

Непосредственное значение с регистром или памятью:

|100000sw|mod111r/m|--data--|data, если sw=0|

DEC
(DECrement operand by 1)

Уменьшение операнда на единицу

^ Схема команды:

dec операнд

Назначение: уменьшение значения операнда в памяти или регистре на 1.

Алгоритм работы:
команда вычитает 1 из операнда. Состояние флагов после выполнения команды:

Применение:
Команда dec используется для уменьшения значения байта, слова, двойного слова в памяти или регистре на единицу. При этом заметьте то, что команда не воздействует на флаг cf.

Регистр: |01001reg|

^ Регистр или память: |1111111w|mod001r/m|

DIV
(DIVide unsigned)

Деление беззнаковое

Схема команды:

div делитель

Назначение: выполнение операции деления двух двоичных беззнаковых значений.

^ Алгоритм работы:
Для команды необходимо задание двух операндов - делимого и делителя. Делимое задается неявно и размер его зависит от размера делителя, который указывается в команде:

если делитель размером в байт, то делимое должно быть расположено в регистре ax. После операции частное помещается в al, а остаток - в ah;

если делитель размером в слово, то делимое должно быть расположено в паре регистров dx:ax, причем младшая часть делимого находится в ax. После операции частное помещается в ax, а остаток - в dx;

если делитель размером в двойное слово, то делимое должно быть расположено в паре регистров edx:eax, причем младшая часть делимого находится в eax. После операции частное помещается в eax, а остаток - в edx.

^ Состояние флагов после выполнения команды:

Применение:
Команда выполняет целочисленное деление операндов с выдачей результата деления в виде частного и остатка от деления. При выполнении операции деления возможно возникновение исключительной ситуации: 0 - ошибка деления. Эта ситуация возникает в одном из двух случаев: делитель равен 0 или частное слишком велико для его размещения в регистре eax/ax/al.

О б ъ е к т н ы й к о д:

|1111011w|mod110r/m|

INT
(INTerrupt)

Вызов подпрограммы обслуживания прерывания

^ Схема команды:

int номер_прерывания

Назначение: вызов подпрограммы обслуживания прерывания с номером прерывания, заданным операндом команды.

^ Алгоритм работы:

записать в стек регистр флагов eflags/flags и адрес возврата. При записи адреса возврата вначале записывается содержимое сегментного регистра cs, затем содержимое указателя команд eip/ip;

сбросить в ноль флаги if и tf;

передать управление на программу обработки прерывания с указанным номером. Механизм передачи управления зависит от режима работы микропроцессора.

^ Состояние флагов после выполнения команды:

Применение:
Как видно из синтаксиса, существуют две формы этой команды:

int 3 - имеет свой индивидуальный код операции 0cch и занимает один байт. Это обстоятельство делает ее очень удобной для использования в различных программных отладчиках для установки точек прерывания путем подмены первого байта любой команды. Микропроцессор, встречая в последовательности команд команду с кодом операции 0cch, вызывает программу обработки прерывания с номером вектора 3, которая служит для связи с программным отладчиком.

Вторая форма команды занимает два байта, имеет код операции 0cdh и позволяет инициировать вызов подпрограммы обработки прерывания с номером вектора в диапазоне 0–255. Особенности передачи управления, как было отмечено, зависят от режима работы микропроцессора.

О б ъ е к т н ы й к о д (два формата):

Регистр: |01000reg|

^ Регистр или память: |1111111w|mod000r/m|

JCC
JCXZ/JECXZ
(Jump if condition)

(Jump if CX=Zero/ Jump if ECX=Zero)

Переход, если выполнено условие

Переход, если CX/ECX равен нулю

^ Схема команды:

jcc метка
jcxz метка
jecxz метка

Назначение: переход внутри текущего сегмента команд в зависимости от некоторого условия.

^ Алгоритм работы команд (кроме jcxz/jecxz):
Проверка состояния флагов в зависимости от кода операции (оно отражает проверяемое условие):

если проверяемое условие истинно, то перейти к ячейке, обозначенной операндом;

если проверяемое условие ложно, то передать управление следующей команде.

Алгоритм работы команды jcxz/jecxz:
Проверка условия равенства нулю содержимого регистра ecx/cx:

если проверяемое услов

Структура команды на языке ассемблера Программирование на уровне машинных команд - это тот минимальный уровень, на котором возможно программирование компьютера. Система машинных команд должна быть достаточной для того, чтобы реализовать требуемые действия, выдавая указания аппаратуре машины. Каждая машинная команда состоит из двух частей: операционной, определяющей «что делать» и операндной, определяющей объекты обработки, то есть то «над чем делать» . Машинная команда микропроцессора, записанная на языке Ассемблера, представляет собой одну строку, имеющую следующий вид: метка команда/директива операнд(ы) ; комментарии Метка, команда/директива и операнд разделяются по крайней мере одним символом пробела или табуляции. Операнды команды разделяются запятыми.

Структура команды на языке ассемблера Команда ассемблера указывает транслятору, какое действие должен выполнить микропроцессор. Директивы ассемблера - параметры, заданные в тексте программы, влияющие на процесс ассемблирования или свойства выходного файла. Операнд определяет начальное значение данных (в сегменте данных) или элементы, над которыми выполняется действие по команде (в сегменте кода). Команда может иметь один или два операнда, или не иметь операндов. Число операндов неявно задается кодом команды. Если команду или директиву необходимо продолжить на следующей строке, то используется символ «обратный слеш»: «» . По умолчанию Ассемблер не различает заглавные и строчные буквы в написании команд и директив. Примеры директивы и команды Count db 1 ; Имя, директива, один операнд mov eax, 0 ; Команда, два операнда

Идентификаторы – последовательности допустимых символов, использующиеся для обозначения имен переменных и названий меток. Идентификатор может состоять из одного или нескольких следующих символов: все буквы латинского алфавита; цифры от 0 до 9; спецсимволы: _, @, $, ? . В качестве первого символа метки может использоваться точка. В качестве идентификаторов нельзя использовать зарезервированные имена ассемблера (директивы, операторы, имена команд). Первым символом идентификатора должна быть буква или спецсимвол. Максимальная длина идентификатора 255 символов, но транслятор воспринимает первые 32, остальные игнорирует. Все метки, которые записываются в строке, не содержащей директиву ассемблера, должны заканчиваться двоеточием «: » . Метка, команда (директива) и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Рекомендуется записывать их в колонку для большей yдобочитаемости программы.

Метки Все метки, которые записываются в строке, не содержащей директиву ассемблера, должны заканчиваться двоеточием «: » . Метка, команда (директива) и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Рекомендуется записывать их в колонку для большей yдобочитаемости программы.

Комментарии Использование комментариев в программе улучшает ее ясность, особенно там, где назначение набора команд непонятно. Комментарии начинаются на любой строке исходного модуля с символа «точка с запятой» (;). Все символы, находящиеся справа от «; » до конца строки, являются комментарием. Комментарий может содержать любые печатные символы, включая «пробел» . Комментарий может занимать всю строку или следовать за командой на той же строке.

Структура программы на языке ассемблера Программа, написанная на языке ассемблера, может состоять из нескольких частей, называемых модулями, в каждом из которых могут быть определены один или несколько сегментов данных, стека и кода. Любая законченная программа на языке ассемблере должна включать один главный, или основной, модуль, с которого начинается ее выполнение. Модуль может содержать программные сегменты, сегменты данных и стека, объявленные при помощи соответствующих директив.

Модели памяти Перед объявлением сегментов нужно указать модель памяти при помощи директивы. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Основные модели памяти языка ассемблера: Модель памяти Адресация кода Адресация данных Операционная система Чередование кода и данных TINY NEAR MS-DOS Допустимо SMALL NEAR MS-DOS, Windows Нет MEDIUM FAR NEAR MS-DOS, Windows Нет COMPACT NEAR FAR MS-DOS, Windows Нет LARGE FAR MS-DOS, Windows Нет HUGE FAR MS-DOS, Windows Нет NEAR Windows 2000, Windows XP, Windows Допустимо FLAT NEAR NT,

Модели памяти Модель tiny работает только в 16 -разрядных приложениях MS-DOS. В этой модели все данные и код располагаются в одном физическом сегменте. Размер программного файла в этом случае не превышает 64 Кбайт. Модель small поддерживает один сегмент кода и один сегмент данных. Данные и код при использовании этой модели адресуются как near (ближние). Модель medium поддерживает несколько сегментов программного кода и один сегмент данных, при этом все ссылки в сегментах программного кода по умолчанию считаются дальними (far), а ссылки в сегменте данных - ближними (near). Модель compact поддерживает несколько сегментов данных, в которых используется дальняя адресация данных (far), и один сегмент кода с ближней адресацией (near). Модель large поддерживает несколько сегментов кода и несколько сегментов данных. По умолчанию все ссылки на код и данные считаются дальними (far). Модель huge практически эквивалентна модели памяти large.

Модели памяти Модель flat предполагает несегментированную конфигурацию программы и используется только в 32 -разрядных операционных системах. Эта модель подобна модели tiny в том смысле, что данные и код размещены в одном сегменте, только 32 -разрядном. Для разработки программы для модели flat перед директивой. model flat следует разместить одну из директив: . 386, . 486, . 586 или. 686. Выбор директивы выбора процессора определяет набор команд, доступный при написании программ. Буква p после директивы выбора процессора означает защищенный режим работы. Адресация данных и кода является ближней (near), при этом все адреса и указатели являются 32 -разрядными.

Модели памяти. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Параметр модификатор используется для определения типов сегментов и может принимать значения: use 16 (сегменты выбранной модели используются как 16 -битные) use 32 (сегменты выбранной модели используются как 32 -битные). Параметр соглашение_о_вызовах используется для определения способа передачи параметров при вызове процедуры из других языков, в том числе и языков высокого уровня (C++, Pascal). Параметр может принимать следующие значения: C, BASIC, FORTRAN, PASCAL, SYSCALL, STDCALL.

Модели памяти. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Параметр тип_ОС равен OS_DOS по умолчанию, и на данный момент это единственное поддерживаемое значение этого параметра. Параметр параметр_стека устанавливается равным: NEARSTACK (регистр SS равен DS, области данных и стека размещаются в одном и том же физическом сегменте) FARSTACK (регистр SS не равен DS, области данных и стека размещаются в разных физических сегментах). По умолчанию принимается значение NEARSTACK.

Пример «ничего не делающей» программы. 686 P. MODEL FLAT, STDCALL. DATA. CODE START: RET END START RET - команда микропроцессора. Она обеспечивает правильное окончание работы программы. Остальная часть программы относится к работе транслятора. . 686 P - разрешены команды защищенного режима Pentium 6 (Pentium II). Данная директива выбирает поддерживаемый набор команд ассемблера, указывая модель процессора. . MODEL FLAT, stdcall - плоская модель памяти. Эта модель памяти используется в операционной системе Windows. stdcall - используемое соглашение о вызовах процедур.

Пример «ничего не делающей» программы. 686 P. MODEL FLAT, STDCALL. DATA. CODE START: RET END START . DATA - сегмент программы, содержащий данные. Данная программа не использует стек, поэтому сегмент. STACK отсутствует. . CODE - сегмент программы, содержащей код. START - метка. END START - конец программы и сообщение компилятору, что начинать выполнение программы надо с метки START. Каждая программа должна содержать директиву END, отмечающую конец исходного кода программы. Все строки, которые следуют за директивой END, игнорируются Метка, указанная после директивы END, сообщает транслятору имя главного модуля, с которого начинается выполнение программы. Если программа содержит один модуль, метку после директивы END можно не указывать.

Трансляторы языка ассемблера Транслятор - программа или техническое средство, выполняющее преобразование программы, представленной на одном из языков программирования, в программу на целевом языке, называемую объектным кодом. Помимо поддержки мнемоник машинных команд, каждый транслятор обладает своим собственным набором директив и макросредств, зачастую ни с чем не совместимых. Основные виды трансляторов языка ассемблера: MASM (Microsoft Assembler), TASM (Borland Turbo Assembler), FASM (Flat Assembler) - свободно распространяемый многопроходной ассемблер, написанный Томашем Грыштаром (польск.), NASM (Netwide Assembler) - свободный ассемблер для архитектуры Intel x 86, был создан Саймоном Тэтхемом совместно с Юлианом Холлом и в настоящее время развивается небольшой командой разработчиков на Source. Forge. net.

Src="https://present5.com/presentation/-29367016_63610977/image-15.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 1) Создать проект, выбрав меню File->New->Project и"> Трансляция программы в Microsoft Visual Studio 2005 1) Создать проект, выбрав меню File->New->Project и указав имя проекта (hello. prj) и тип проекта: Win 32 Project. В дополнительных опциях мастера проекта указать “Empty Project”.

Src="https://present5.com/presentation/-29367016_63610977/image-16.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 2) В дереве проекта (View->Solution Explorer) добавить"> Трансляция программы в Microsoft Visual Studio 2005 2) В дереве проекта (View->Solution Explorer) добавить файл, в котором будет содержаться текст программы: Source. Files->Add->New. Item.

Трансляция программы в Microsoft Visual Studio 2005 3) Выбрать тип файла Code C++, но указать имя с расширением. asm:

Трансляция программы в Microsoft Visual Studio 2005 5) Установить параметры компилятора. Выбрать по правой кнопке в файле проекта меню Custom Build Rules…

Трансляция программы в Microsoft Visual Studio 2005 и в появившемся окне выбрать Microsoft Macro Assembler.

Трансляция программы в Microsoft Visual Studio 2005 Проверить по правой кнопке в файле hello. asm дерева проекта меню Properties и установить General->Tool: Microsoft Macro Assembler.

Src="https://present5.com/presentation/-29367016_63610977/image-22.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 6) Откомпилировать файл, выбрав Build->Build hello. prj."> Трансляция программы в Microsoft Visual Studio 2005 6) Откомпилировать файл, выбрав Build->Build hello. prj. 7) Запустить программу, нажав F 5 или выбрав меню Debug->Start Debugging.

Программирование в ОС Windows Программирование в OC Windows основывается на использовании функций API (Application Program Interface, т. е. интерфейс программного приложения). Их количество достигает 2000. Программа для Windows в значительной степени состоит из таких вызовов. Все взаимодействие с внешними устройствами и ресурсами операционной системы происходит, как правило, посредством таких функций. Операционная система Windows использует плоскую модель памяти. Адрес любой ячейки памяти будет определяться содержимым одного 32 -битного регистра. Возможны 3 типа структур программ для Windows: диалоговая (основное окно - диалоговое), консольная, или безоконная структура, классическая структура (оконная, каркасная).

Вызов функций Windows API В файле помощи любая функция API представлена в виде тип имя_функции (ФА 1, ФА 2, ФА 3) Тип – тип возвращаемого значения; ФАх – перечень формальных аргументов в порядке их следования Например, int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Данная функция выводит на экран окно с сообщением и кнопкой (или кнопками) выхода. Смысл параметров: h. Wnd -дескриптор окна, в котором будет появляться окно-сообщение, lp. Text - текст, который будет появляться в окне, lp. Caption - текст в заголовке окна, u. Type - тип окна, в частности можно определить количество кнопок выхода.

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Практически все параметры API-функций в действительности 32 -битные целые числа: HWND - 32 -битное целое, LPCTSTR - 32 -битный указатель на строку, UINT - 32 -битное целое. К имени функций часто добавляется суффикс "А" для перехода к более новым версиям функций.

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); При использовании MASM необходимо в конце имени добавить @N N – количество байт, которое занимают в стеке переданные аргументы. Для функций Win 32 API это число можно определить как количество аргументов n, умноженное на 4 (байта в каждом аргументе): N=4*n. Для вызова функции используется команда CALL ассемблера. При этом все аргументы функции передаются в нее через стек (команда PUSH). Направление передачи аргументов: СЛЕВА НАПРАВО - СНИЗУ ВВЕРХ. Первым будет помещаться в стек аргумент u. Type. Вызов указанной функции будет выглядеть так: CALL Message. Box. A@16

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Результат выполнения любой API функции - это, как правило, целое число, которое возвращается в регистре EAX. Директива OFFSET представляет собой «смещение в сегменте» , или, переводя в понятия языков высокого уровня, «указатель» начала строки. Директива EQU подобно #define в языке СИ определяет константу. Директива EXTERN указывает транслятору, что функция или идентификатор является внешним по отношению к данному модулю.

Пример программы «Привет всем!» . 686 P. MODEL FLAT, STDCALL. STACK 4096. DATA MB_OK EQU 0 STR 1 DB "Моя первая программа", 0 STR 2 DB "Привет всем!", 0 HW DD ? EXTERN Message. Box. A@16: NEAR. CODE START: PUSH MB_OK PUSH OFFSET STR 1 PUSH OFFSET STR 2 PUSH HW CALL Message. Box. A@16 RET END START

Директива INVOKE Транслятор языка MASM позволяет также упростить вызов функций с использованием макросредства – директивы INVOKE: INVOKE функция, параметр1, параметр2, … При этом нет необходимости добавлять @16 к вызову функции; параметры записываются точно в том порядке, в котором приведены в описании функции. макросредствами транслятора параметры помещаются в стек. для использования директивы INVOKE необходимо иметь описание прототипа функции с использованием директивы PROTO в виде: Message. Box. A PROTO: DWORD, : DWORD Если в программе используется множество функций Win 32 API, целесообразно воспользоваться директивой include C: masm 32includeuser 32. inc

Общие сведения о языке ассемблера

Символический язык ассемблера позволяет в значительной степени устранить недостатки программирования на машинном языке.

Главным его достоинством является то, что на языке ассемблера все элементы программы представлены в символической форме. Преобразование символических имен команд в их двоичные коды возлагаются на специальную программу - ассемблер, которая освобождает программиста от трудоемкой работы и исключает неизбежные при этом ошибки.

Символические имена, вводимые при программировании на языке ассемблера, как правило отражают семантику программы, а аббревиатура команд - их основную функцию. Например: PARAM - параметр, TABLE - таблица, MASK - маска, ADD - сложение, SUB - вычитание и т.д. п. Такие имена легко запоминаются программистом.

Для программирования на языке ассемблера необходимо иметь сложные инструментальные средства, чем при программировании на машинном языке: нужны вычислительные комплексы на базе микро - ЭВМ или ПЭВМ с комплектом периферийных устройств (алфавитно-цифровая клавиатура, символьный дисплей, НГМД и печатающее устройство), а также резидентные или кросс-системы программирования для необходимых типов микропроцессоров. Язык ассемблера позволяет эффективно писать и отлаживать значительно более сложные программы, чем машинный язык (до 1 - 4 Кбайт).

Языки ассемблера являются машинно-ориентированными, т. е. зависимыми от машинного языка и структуры соответствующего микропроцессора, так как в них каждой команде микропроцессора присваивается определенное символическое имя.

Языки ассемблера обеспечивают существенное повышение производительности труда программистов по сравнению с машинными языками и в то же время сохраняют возможность использовать все программно-доступные аппаратные ресурсы микропроцессора. Это дает возможность квалифицированным программистам составлять программы, выполняемые за более короткое время и занимающие меньший объем памяти по сравнению с программами, создаваемыми на языке высокого уровня.

В связи с этим практически все программы управления устройствами ввода/вывода (драйверы) пишутся на языке ассемблера не смотря на наличие достаточно большой номенклатуры языков высокого уровня.

С помощью языка ассемблера программист может задать следующие параметры:

мнемонику (символическое имя) каждой команды машинного языка микропроцессора;

стандартный формат для строк программы, описываемой на ассемблере;

формат для указания различных способов адресации и вариантов команд;

формат для указания символьных констант и констант целочисленного типа в различных системах счисления;

псевдокоманды, управляющие процессом ассемблирования (трансляции) программы.

На языке ассемблера программа записывается построчно, т. е. для каждой команды отводится одна строка.

Для микро - ЭВМ, построенных на базе наиболее распространенных типов микропроцессоров, может существовать несколько вариантов языка ассемблера, однако практическое распространение обычно имеет один - это так называемый стандартный язык ассемблера

Программирование на уровне машинных команд - это тот минимальный уровень, на котором возможно составление программ. Система машинных команд должна быть достаточной для того, чтобы реализовать требуемые действия, выдавая указания аппаратуре вычислительной машины.

Каждая машинная команда состоит из двух частей:

· операционной - определяющей, "что делать";

· операндной - определяющей объекты обработки, "с чем делать".

Машинная команда микропроцессора, записанная на языке ассемблера, представляет собой одну строку, имеющую следующий синтакический вид:

метка команда/директива операнд(ы) ;комментарии

При этом обязательным полем в строке является команда или директива.

Метка, команда/директива и операнды (если имеются) разделяются по крайней мере одним символом пробела или табуляции.

Если команду или директиву необходимо продолжить на следующей строке, то используется символ обратный слеш: \.

По умолчанию язык ассемблера не различает заглавные и строчные буквы в написании команд или директив.

Прямая адресация : эффективный адрес определяется непосредственно полем смещения машинной команды, которое может иметь размер 8, 16 или 32 бита.

mov eax, sum ; eax = sum

Ассемблер заменяет sum на соответствующий адрес, хранящийся в сегменте данных (по умолчанию адресуется регистром ds) и значение, хранящееся по адресу sum, помещает в регистр eax.

Косвенная адресация в свою очередь имеет следующие виды:

· косвенная базовая (регистровая) адресация;

· косвенная базовая (регистровая) адресация со смещением;

· косвенная индексная адресация;

· косвенная базовая индексная адресация.

Косвенная базовая (регистровая) адресация. При такой адресации эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме sp/esp и bp/ebp (это специфические регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки .

mov eax, ; eax = *esi; *esi значение по адресу esi

Понравилась статья? Поделиться с друзьями: